Effect of Surface Modifications on the Performance of Nuclear Grade Activated Carbon for Removal of Methyl Iodide

By

W. Peter Freeman

Jacobi Carbons Group
• ASTM D3803 shows that methyl iodide penetration increases as the moisture content of the carbon increases with %RH:
Log\textsubscript{10} Methyl Iodide Penetration at 30°C

Versus % Relative Humidity

<table>
<thead>
<tr>
<th>% RH</th>
<th>No.</th>
<th>Ave. % Pen.±s.d.</th>
<th>Carbon Moisture Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1</td>
<td>0.02 ± N.A.</td>
<td>10.8</td>
</tr>
<tr>
<td>70</td>
<td>1</td>
<td>0.10 ± N.A.</td>
<td>22.3</td>
</tr>
<tr>
<td>80</td>
<td>1</td>
<td>0.16 ± N.A.</td>
<td>22.7</td>
</tr>
<tr>
<td>90</td>
<td>3</td>
<td>0.19 ± 0.07</td>
<td>23.6</td>
</tr>
<tr>
<td>93</td>
<td>3</td>
<td>0.29 ± 0.07</td>
<td>24.2</td>
</tr>
<tr>
<td>95</td>
<td>8</td>
<td>0.56 ± 0.11</td>
<td>24.4</td>
</tr>
<tr>
<td>96</td>
<td>4</td>
<td>1.12 ± 0.2</td>
<td>25.0</td>
</tr>
<tr>
<td>97</td>
<td>4</td>
<td>4.85 ± 1.2</td>
<td>25.5</td>
</tr>
<tr>
<td>98</td>
<td>4</td>
<td>10.5 ± 3.9</td>
<td>27.1</td>
</tr>
<tr>
<td>99</td>
<td>1</td>
<td>21.8 ± N.A.</td>
<td>30.5</td>
</tr>
</tbody>
</table>

FIG. A1.1 Results of Sensitivity Testing of New, Co-impregnated, 2NCarbon Using the IC Protocol and Varying Only Relative Humidity
It is interesting to note that if we could decrease the amount of moisture adsorbed at 95% RH to that of 90% RH we would:

• Decrease the % penetration from 0.56 to 0.19 (nearly 3 times improvement), while only having to:

• Decrease the moisture content from 24.4% to 23.6% (a 0.8% decrease)
• If the surface of the activated carbon could be modified to make it a bit more hydrophobic then:
• The methyl iodide performance could be increased as determined by an ASTM D3803 test and perhaps
• Costs could be reduced by requiring less impregnant for the same performance?
The functional groups on the surface of the carbon can be modified to change its nature:
The surface of the carbon can be modified chemically (HNO3, H2O2, O3 for example)
The surface of the carbon can be modified by incorporation of nitrogen:
• The surface of the carbon can be modified by heat treatment in nitrogen or hydrogen.
• High-temperature treatments remove oxygen from the active sites at the edges of graphite-like crystallites (graphene layers).
• The character of the residual carbon active sites formed depends on the gaseous atmosphere in which the treatment is carried out.
Upon treatment with H₂ at 950 °C, activated carbon will adsorb very little oxygen at room temperature.

Heat treatment with N₂ and the activated carbon will adsorb as much as 20 times more O₂ under the same conditions.
To explain this difference in surface chemistry it has been postulated that treatment in H2 not only removes oxygen (as CO and CO2) but also removes (hydrogasifies) some of the very reactive residual carbon atoms (e.g., as CH4). In contrast, treatment in an inert gas removes the oxygen but leaves behind many highly (re)-active carbon atoms.
31st Nuclear Air Cleaning Conference, July 19-21, 2010 Charlotte, NC

(a) $\text{N}950 + 2\text{O}_2 \xrightarrow{25^\circ C} \text{Product}$

(b) $\text{H}950 + 2\text{O}_2 \xrightarrow{150^\circ C} \text{Product}$
Why is this important to us?

For a couple of reasons:

1. It is generally felt that oxygen surface complexes are responsible for the ageing effect of nuclear grade carbons

2. And these same oxygen complexes are hydrophilic and thus increase methyl iodide penetration when tested according to ASTM D3803
We can see that both H2 treated and N2 treated carbons adsorb less water at a given %RH.
• We are especially interested in the reduction in moisture adsorbed at high %RH
• Others have found that the oxygen complexes remove by nitrogen heat treatment are quickly replaced by exposure to ambient air
• The hydrogen treated carbon appears stable in air even at 150 °C
To test this thinking, the methyl iodide penetration was determined according to ASTM D3803 on a sample of AddSorb RC3-8x16, KI-TEDA co-impregnated carbon,

A sample prepared from the same base material heat treated with H₂,

And a sample prepared from the same base carbon but oxidized with HNO₃ and then KI-TEDA impregnated.
31st Nuclear Air Cleaning Conference, July 19-21, 2010 Charlotte, NC

- Results
- Untreated AddSorb RC3 - 8x16:
 - Methyl iodide penetration: 0.37%
 - Moisture content: 23.8%
- Oxidized AddSorb RC3 – 8x16:
 - Methyl iodide penetration: 10.1%
 - Moisture content: 28.7%
- H$_2$ treated AddSorb RC3- 8x16
 - Methyl iodide penetration: 0.10%
 - Moisture content: 22.0%
Conclusions:

• H₂ heat treatment shows promise as a way to improve the performance of nuclear grade carbons (an existing activation kiln operation can be modified to make this base in situ)

• This also has the potential to improve ageing characteristics

• N- incorporated carbons will be investigated in the future as well