NPP Containment Vent Protection
an Examination of the Effects and Mitigation Strategies
to Manage Decay Heat Deposition on Dry Filtration Vent Systems

33rd International Nuclear Air Cleaning Conference
Union Station Hotel, St Louis, MO
June 22-24, 2014

Adam Swain, Chris Chadwick
Porvair Filtration Group

World Class Filtration Solutions
Purpose Of The Paper And Presentation

To give focus to the particular aspect of decay heat deposition on dry filtration solutions in containment venting applications.

- To continue the debate
- To familiarise the industry with this particular aspect of the FCVS application
- To review the implications decay heat loading on mechanical equipment
- To illustrate the current somewhat different models for the consequences of LOCA specifically relating to decay heat
Mitigating a LOCA

A LOCA presents a complex problem which appears not to be fully understood.

It is reasonable to simplify FCVS applications in the following terms:

- An arduous set of process conditions (often in conflict with one another, for seemingly similar sites)

- A range of different operating philosophies
Establishing An Accurate Source Term

In order to begin to understand and indeed design a filtration system to deal with the consequences of a LOCA, an accurate source term must be derived, as it appears there is a range of different and sometimes conflicting requirements.

With a specific focus to decay heat we have a seen several different values quoted for this individual variable, which would have a significant effect on the overall size of otherwise similar equipment.
The effects of decay heat

• Total burdens experienced to date in the several applications we have been asked to look at have ranged from 2 kW to some hundreds of kW

• Must be distributed across the filter elements to a sustainable figure per unit area (preventing loss of the system) or be removed by another means

• Decay heat loading must be managed such that filter media/element integrity is maintained

• The potential presence of caesium hydroxide (which melts at 273 Celsius)
Effects of Heat Loading on Media Integrity

- High active surface area
- Small diameter fibres (1-30 microns)
- Relies upon sinter bonds for structural integrity
- Currently understood continuous operating temperature 370 °C maximum in oxidising environment
- Higher in reducing environment depending on gas constituents
Tensile Test 1 (Ambient Calibration Test)

Test conditions

• Temperature: 20°C (68°F)
• Pressure: Ambient
• Samples tested: 4
Tensile Test 2 (Post Heat Soak)

Test conditions

- Soak temperature: 500°C (932°F)
- Soak time: 72 hours
- Pressure: Ambient
- Test furnace fluid: Air
- Samples tested: 4
Tensile Test Results

![Graph showing tensile test results]
Efficiency Test 1 (Calibration Test)

Test conditions

- Temperature: 20°C (68°F)
- Pressure: ambient
- Face velocity: 3 cm/s
- Challenge: 0.3µm Ondina oil (DOP)
Efficiency Test 2 (Post Heat Soak Test)

Test conditions

- Temperature: 20°C (68°F)
- Pre test heat soak: 500°C (932°F)
- Pressure: ambient
- Face velocity: 3 cm/s
- Challenge: 0.3µm Ondina oil
Efficiency Test Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Filtration Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Calibration test ambient</td>
<td>99.9924% at 0.3 µm</td>
</tr>
<tr>
<td>2 post heat soak test</td>
<td>99.9916% at 0.3 µm</td>
</tr>
</tbody>
</table>

• In both tests efficiencies of greater than 99.97% at 0.3µm were achieved

• No appreciable loss in efficiency was observed after the heat soak test (DF at 0.3 µm >10^4 in both cases)
Filter Assembly Heat Testing

• 7 off filter elements were provided for the test program

• Heating rods inserted provide a variable power input (Watts) for a fixed unit area

• Pitched in a circular array with adjustable spacing

• Vertical and horizontal tests performed with and without a covering shroud

• A stabilised temperature plateau was reached for a fixed heat input
Filter Cores and Their Purpose

- Key structural component of a filter element
- Relatively open structure ranging from typically 40 to 70%
- To enable custom filtration solution to be produced without imposing high ΔP penalty
- A key factor influencing filter element selection
- Primarily two failure mechanisms
Why Is Core Collapse Important?

- CV
- SRV
- Process Filters
- AGR BPBD Filters
- Metallic Radial Flow HEPA Filters
Original Calculated Core Collapse Values

<table>
<thead>
<tr>
<th>Core Collapse Failure Mode</th>
<th>Core Collapse Pressure Psig (Barg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumferential Collapse</td>
<td>605 (41.7)</td>
</tr>
<tr>
<td>Buckling</td>
<td>1582 (109.1)</td>
</tr>
</tbody>
</table>

Test Sample 1

<table>
<thead>
<tr>
<th>Core Number</th>
<th>Core Collapse Pressure Psig (Barg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>440 (30.3)</td>
</tr>
<tr>
<td>2</td>
<td>400 (27.6)</td>
</tr>
<tr>
<td>3</td>
<td>420 (29)</td>
</tr>
</tbody>
</table>
Core Collapse Values

- Core Collapse Values
- Minimum Calculated Circumferential Collapse Value

Graph showing the variation of collapse pressure in PSI against core number.
Observations

• Both efficiency and structural integrity were not significantly affected when a filter was exposed to elevated temperature for a fixed time period

• It appears that an additional factor of safety must be incorporated into the routine methodology for calculating core collapse

• Filter elements in systems where core collapse in extreme conditions is a concern, should also be supported by tested data to validate a “true” core collapse value
On-going Work

- We aim to complete additional heat soak efficiency and media tensile testing, at greater elevated temperatures

- Our test work continues with a view to determine a more reliable method of determining a filter cores true collapse value.

- We have a completed a phase of core collapse test at elevated temperature

- We are looking at performing further test programs on different configurations of cores and elevated temperatures
Table of HT Collapse Results

<table>
<thead>
<tr>
<th>Core Number</th>
<th>Core Collapse Pressure Psig (Barg)</th>
<th>Out of Round Distinguishing Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>405 (27.9)</td>
<td>Bottom half out of tolerance</td>
</tr>
<tr>
<td>8</td>
<td>407 (28.1)</td>
<td>All sections in tolerance</td>
</tr>
<tr>
<td>A</td>
<td>376 (25.9)</td>
<td>Top quarter in tolerance</td>
</tr>
<tr>
<td>B</td>
<td>440 (30.3)</td>
<td>Middle third out of tolerance</td>
</tr>
<tr>
<td>C</td>
<td>407 (28.1)</td>
<td>All sectors in tolerance</td>
</tr>
<tr>
<td>D</td>
<td>464 (32) no collapse</td>
<td>All sections in tolerance</td>
</tr>
</tbody>
</table>
Conclusions

- Decay heat is clearly a fundamental issue and not an after thought.

- One potential worst case outcome of uncontrolled decay heat loading, is a huge temperature rise which may possibly be sufficient to cause the steel filters to melt.

- At the very least temperature rises (to a much lower degree than mentioned above) could give rise to reductions in available tensile and yield strength, potentially resulting in collapse of filter elements/plates or rupture of the filter medium.

- In addition to the other points raised in my presentation we hope that our joint presentations have cast a light on the importance of establishing a true and verifiable source term to enable filter companies to offer fully competent solutions to the filtration aspects of containment venting.
Thank you for your time
are there any questions?