Characterization of a Test Stand for Evaluating Performance and Qualifying AG-1 FI Metal Media Filters and FO Ceramic Filters Under ASME AG-1

> John A. Wilson and Charles A. Waggoner James Worth Bagley College of Engineering Mississippi State University

Institute for Clean Energy Technology

Housing

- Three Sections
 - Cap, Middle Section, Base
 Air Flow Inlet & Exit
 - Ports
 - Camera
 - Sampling
 - Differential Pressure
 - Temperature
 - Static Pressure

Tubesheet

Piping

Upstream Piping

- Aerosol Injection Port
- Aerosol Sampling Port
- Sensors
 - Temperature
 - Relative Humidity
 - Static Pressure

Downstream

- Aerosol Sampling Ports
- Sensors
 - Temperature
 - Static Pressure
 - Venturi

Sensor Locations

Sensors Include

- Static Pressure x 6
 0 to 30 PSIG
- Temperature x 6
 -58° F to 932° F
- Relative Humidity and Temperature
 - **0** to 100%
 - -94° F to 356° F
- Differential Pressure
 0 to 2.5 PSIG
 0 to 5 PSIG
 0 to 15 PSIG

Control System

- Test Stand System Control and Data Acquisition Computer
 - CPU
 - Program Logic Controller (PLC)
 - Wonderware Software for User Interface
- Baldor Variable Frequency Drive (VFD) 20-60 Hz

Air Supply System

- Spencer Vortex Blowers
- Elmo-Rietschle Claw Compressor
- Pneumatic Air Bleed Off Valve
- Primary Flow Signal Venturi

Chiller and Heat Exchangers

Water Chiller

Capacity 51,900 BTU/hr

Heat Exchangers

- Air to Air Reheat Heat
 Exchanger
- Air to Chilled Fluid Heat Exchanger

Aerosol Generation

Large Scale Aerosol Generator – Potassium Chloride (KCl)

Aerosol Measurement

Instrument	#/cc (min)	#/cc (max)	Particle Size Distribution
			(µm)
Scanning Mobility Particle Sizer (SMPS)	2	1x10 ⁸	0.008 - 1
TSI Model 3080 Electrostatic Classifier			
• 95 cm Custom Differential Mobility Analyzer (DMA)			
• TSI Model 3775 Condensation Particle Counter (CPC)			
Scanning Mobility Particle Sizer (SMPS)	2	1x10 ⁸	0.008 – 0.6
TSI Model 3080 Electrostatic Classifier			
• TSI Model 3081 Differential Mobility Analyzer (DMA)			
• TSI Model 3772 Condensation Particle Counter (CPC)			
TSI Model 3321 APS	1	1x10 ³	0.3 – 20
(with TSI Model 3302A Diluter)		(1x10 ⁵)	
TSI Model 3340 LAS	< 0.02	1.8x10 ³	0.09 – 7.5

Pressure Reducer

- Elevated Differential Pressure
 - Loading Test
 - Instrument
- Pressure Reducer is Necessary for > 1 PSIG

Image Collection

- Camera System
 Digital Camera
 Lighting
 - Access Ports

Air Supply System

 Two Systems Characterized
 Spencer Vortex Blowers in Series
 133 ACFM Maximum
 Elmo-Rietschle Claw Compressor

160 ACFM Maximum

Claw Compressor Performance Curve

Temperature and Relative Humidity for 50 CFM

UNIVERSITY

Temperature and Relative Humidity for 160 CFM

UNIVERSITY

Preliminary Metal Media Filter Element Testing

Filter Elements Tested

- Porvair Filtration
- Sintered Fiber
- Pleated Media
- 3 ¼ Feet Length
- 3 inch Diameter
- Testing
 - 120 CFM
 - 5 ½ Hours
 - Potassium Chloride (KCl)

Preliminary Metal Media Efficiency Curve & MPPS Efficiency vs Particle Diameter

Efficiency Increases with Loading

MISSISSIPPI STAT

19

Preliminary Metal Media Total Filtering Efficiency

Total FE vs Time

- Increases with Loading
- Differential Pressure vs Time
 - Increases with Loading

Recommendations

- Upstream HEPA Filters
- Aerosol Generation
 - Aerosol Injection
 Against Elevated
 Pressure.
 - Temperature and Moisture Reduction

- High Temperature Section
- High Pressure Test Stand
- Back Pulse Capability

Acknowledgements

Initial Funding by:

- The International Society for Nuclear Air Treatment Technologies (ISNATT)
- Additional Funding Provided by:
 - The U.S. DOE Office of Environmental Management Under Cooperative Agreement DE-FC01-06EW07040.
 - The National Nuclear Security Administration Under Contract Number DE-FC01-06EW07040-06040310.

